【作者簡介】:丘成桐為美國哈佛大學數學與物理教授,美國科學院院士,中國科學院外籍院士,菲爾茲獎、克拉福德獎、沃爾夫獎得主。發展了強有力的偏微分方程技巧,使得微分幾何學產生了深刻的變革,解決了卡拉比(Calabi)猜想、正質量猜想等眾多難題,影響遍及理論物理和幾乎所有核心數學分支。籌資成立浙江大學數學科學研究中心、香港中文大學數學研究所、北京晨興數學中心和清華大學丘成桐數學科學中心等學術機構,并擔任主任;1998 年創立世界華人數學家大會(ICCM),毎三年舉辦一次。由于對中國數學發展的突出貢獻,獲得 2003 年度中華人民共和國科學技術合作獎。科普著作有《大宇之形》(2012)、《從萬里長城到巨型對撞機》(2016)、《簡史:哈佛數學150年》(即將出版),主編科普雜志《數理人文》和叢書《數學與人文》。
譯者簡介:夏木青為香港專業數學科普譯者。
本文翻譯并整理自丘成桐推廣《大宇之形》之各場英文演講稿,刊登于《數理人文》雜志第2期(2014/6/15),歡迎讀者朋友分享、評論和反饋建議。媒體或機構如需轉載,請聯系波士頓國際出版社或《數理人文》。
重點摘要
● 丘成桐因證明卡拉比猜想獲得菲爾茲獎。由此確立的卡拉比-丘空間,在愛因斯坦的廣義相對論里,相當于竟然存在重力非零的真空宇宙!
● 弦論是統一四種作用力最成熟的物理理論,它斷言宇宙是十維的時空,除了日常的四維時空,另外卷縮的六維微小空間正是卡拉比-丘空間。
● 弦論高度整合物理和數學的深刻洞識,反過來促進了數學的新進展,鏡對稱預言了數學家無法想像的公式,震驚數學界。
今天要講的,是數學和物理如何互動互利,這種關系在卡拉比-丘空間(Calabi-Yau space)和弦論的研究中尤為突出。這個題目非出偶然,它正是我和納迪斯(Steve Nadis)的新書《大宇之形》的主旨。書中描述了這些空間背后的故事,個人的經歷和幾何的歷史。
我寫這本書,是希望讀者透過它,了解數學家是如何看這世界的。數學并非一門不食人間煙火的抽象學問,相反地,它是我們認識物理世界不可或缺的工具。現在,就讓我們沿著時間,或更確切地,沿著時空從頭說起。
站在巨人的肩上——黎曼幾何學
1969 年,我到了美國加州大學柏克萊分校念研究所。在那里我了解到,19 世紀幾何學在高斯和黎曼的手上經歷了一場翻天覆地的變化。黎曼的創見,顛覆了前人對空間的看法,給數學開辟了嶄新的途徑。
幾何的對象,從此不再局限于平坦而線性的歐幾里得空間內的物體。黎曼引進了更抽象的、具有任何維數的空間。在這些空間了,距離和曲率都具意義。此外,在它們上面還可以建立一套適用的微積分,作為研究與分析的工具。
大約五十年后,愛因斯坦發覺包含彎曲空間的這種幾何學,剛好可用來統一牛頓的重力理論和狹義相對論,沿著新路邁進,他終于完成了著名的廣義相對論。在研究所的第一年,我念了黎曼幾何學。它與我在香港時學的古典幾何不一樣,過去我們只會討論在線性空間里的曲線和曲面。在柏克萊,我修了史帕尼爾(Edwin Spanier)的代數拓樸、勞森(Blaine Lawson)的黎曼幾何、莫瑞(Charles Morrey)的偏微分方程。此外,我還旁聽了包括廣義相對論在內的幾門課,我如饑似渴地盡力去吸收知識。
當時柏克萊數學系大約有 500 名研究生,地狹人眾,大家都沒有研究室。課余的時間我都呆在數學圖書館,它簡直成了我的辨公室。我孜孜不倦地找尋有興趣的材料來看。圣誕節到了,別人都回去和家人團聚。我卻在讀《微分幾何期刊》(Journal of Differential Geometry)上米爾諾(John Milnor)的一篇論文 , 它闡述了空間里曲率與基本群(fundamental group)的關系。我既驚且喜,因為它用到了我剛剛學過的東西。
米爾諾的文筆是如此流暢,我通讀此文毫不費力。他文中提及普萊斯曼(Alexandre Preissman)的另一論文,我也極感興趣。從這些文章中可以見到,負曲率空間的基本群受到曲率強烈的約束,必須具備某些特定的性質。
基本群是拓樸上的概念,基本上考慮的是從定點出發的所有回圈,并將可互相形變的回圈視為等價。普萊斯曼定理說,負曲率流形的基本群中,任兩個可交換的元素,皆能寫成某元素的自乘。這個結果很引人入勝,我試著推廣普萊斯曼的結果,想看看如果空間曲率非正,結果又是如何?這是我平生第一次將空間的曲率(精確的幾何描述)和比較粗糙、只留意形態特征的數學理論(稱為拓樸學)聯系起來。
圖中每一列的形體,在拓樸學中都被視為相同,雖然幾何性質顯然不同。第一列是 2 維的球面;第二列是 2 維的環面。
雖然,拓樸也是一種研究空間的學問,但它不涉及距離。從這角度來看,拓樸所描繪的空間并沒有幾何所描繪的那樣精細。幾何要量度兩點間的距離,對空間的屬性要知道更多。這些屬性可以由每一點的曲率表達出來,這便是幾何了。
舉例而言,甜甜圈和咖啡杯具有截然不同的幾何,但它們的拓樸卻無二樣。同樣,球面和橢球面的幾何迥異但拓樸相同。作為拓樸空間,球面的基本群是無聊的,在它上面的任何閉曲線,都可以透過連續的變動而縮成一點。但環面(torus)則否,在它上面可以找到某些閉曲線,無論如何連續地變動都不會縮成一點。由此可見,球面和環面具有不同的拓樸。
球面上所有的回圈都可以縮到一個點,但環面上有些回圈,卻沒有這樣的性質。這表示球面和環面的拓樸不一樣。
普萊斯曼定理討論了幾何(曲率)如何影響拓樸(基本群),我做了點推廣。在影印這些札記時,一位數學物理的博士后費雪(Arthur Fisher)嚷著要知道我干了什么。他看了那些札記后,說任何把曲率與拓樸扯上關系的結果,都會在物理學中用上。這句話在我心中留下烙印,至今不忘。
彎曲就是重力——廣義相對論
狹義相對論告訴我們,時間和空間渾為一體,形成時空,不可分割。愛因斯坦進一步探究重力的本質,他的友人格羅斯曼(Marcel Grossmann)是數學家,愛氏透過他認識到黎曼和黎奇(Ricci)的工作。黎曼引進了抽象空間的概念,并且討論了其上的距離和曲率。愛因斯坦利用這種空間,作為他研究重力的舞臺。
愛因斯坦也引用了黎奇的工作,以他創造的曲率來描述物質在時空的分布。黎奇曲率乃是曲率張量的跡(trace),是曲率的某種平均值。它滿足的畢安奇恒等式(Bianchi identity),奇妙地可以看成一條守恒律。愛因斯坦利用了這條守恒律來把重力幾何化,從此我們不再視重力為物體之間的吸引力。新的觀點是物體的存在使空間產生了曲率,重力應當看作是這種曲率的表現。
對歷史有興趣的讀者,愛因斯坦的自家說辭更具說服力。他說:
這套理論指出重力場由物質的分布決定,并隨之而演化,正如黎曼所猜測的那樣,空間并不是絕對的,它的結構與物理不能分割。我們宇宙的幾何絕不像歐氏幾何那樣孤立自足。
當然,愛因斯坦建立這個理論的過程絕非坦途。一開始,他想將重力理論和狹義相對論結合卻遭遇失敗。后來,他意識到這是非線性理論,并以重力定律在所有坐標系皆相同的等效原理(equivalence principle)作為指導原則。1912 年,他領略到必須以帶勞侖茲符征(Lorentzian signature)的黎曼度量來作為重力勢。另外,它還必須解決兩個問題,首先是如何將狹義相對論的場方程轉換到有黎曼度量的情況,然后還需要厘清決定黎曼度量的法則。1912 年到 1914 年之間,他和格羅斯曼合作,發現第一個問題要使用黎曼幾何上的黎奇與李維奇威塔(LeviCivita)所發展的微分計算法,第二個問題的解答,則要應用黎曼建立的二階微分不變量。
球面上的“直線” 就是大圓,經線都是大圓,但緯線除了赤道之外都不是大圓。想像有兩個人如圖從赤道開始往北方走,明明是“平行”開始的,卻不自覺愈走愈近,好像有力在牽引著彼此。究其原因在于球面的曲率是正的,不像平面的曲率等于零。這說明曲率為何可解釋為力。
愛因斯坦一直奮斗到 1915 年才找到正確的數學形式,建立了廣義相對論,并找到能測試這個理論的天文實驗方法。大概在同時,知名數學家希爾伯特(David Hilbert)也獨立找到場方程的正確形式,但他沒能更近一步和實驗結合。
講到自己的成就時,愛因斯坦寫道:
就學問本身而言,這些理論的推導是如此行云流水,一氣呵成,聰明的人花點力氣就能掌握它。然而,多年來的探索,苦心孤詣,時而得意,時而氣餒,到事竟成,其中甘苦,實在不足為外人道。
愛因斯坦研究重力的經歷,固然令人神往,他的創獲更是驚天動地。但是黎曼幾何學在其中發揮的根本作用,也是昭昭然不可抹殺的。
半個多世紀后,我研習愛因斯坦方程組時,發現物質只能決定時空的部分曲率,為此心生困惑,自問能否找到一個真空,即沒有物質的時空,但其曲率并不平凡,即其重力非零。當然,著名愛因斯坦方程的史瓦茲柴德(Schwarzschild)解具有這些性質。它描述的乃是非旋轉的黑洞,這是個真空,但奇怪地,極端的重力產生了質量。然而這個解具有一個奇點(singularity),在那里所有物理的定律都不適用。
我要找的時空不似史瓦茲柴德解所描繪的那樣是開放無垠的,反之,它是光滑不帶奇點,并且是緊致(compact)而封閉的。即是說,有沒有一個緊致而不含物質的空間,即封閉的真空宇宙,但其上的重力卻不等于零?這問題在我心中揮之不去,我認為這種空間并不存在。如果能從數學上加以論證,這會是幾何學上的一條美妙的定理。
柳暗花明又一村——卡拉比猜想
從上世紀 70 年代開始,我便在考慮這個問題。當時,我并不知道幾何學家卡拉比(Eugenio Calabi)早已提出差不多同樣的問題。他的提問透過頗為復雜的數學語言來表述,其中牽涉及凱勒流形(Kähler manifold)、黎奇曲率、陳氏類(Chern class)等等,看起來跟物理沾不上邊。但事實上,卡拉比抽象的猜想也可以翻過來,變為廣義相對論里的一個問題。
卡拉比和丘成桐攝于哈佛科學中心。
新的內容乃是要求要找的時空具有某種內在的對稱性,這種對稱物理學家稱之為超對稱(supersymmetry,用數學語言來說,在這個情況指的就是凱勒流形)。于是上述的問題便變成這樣:能否找到一個緊致而不帶物質的超對稱空間,其中的曲率非零(即具有重力)?
卡拉比猜想不僅指出封閉而具重力的真空的存在性,而且還給出系統地大量構造這類空間的途徑,大家都認為世間那有這樣便宜的東西可撿。可是,縱然不乏懷疑卡拉比猜想的理由,但沒人能夠反證它。我與其他人一起試圖證明卡拉比猜想所描述的空間并不存在,花了差不多三年。
1973 年我出席了在斯坦福大學舉行的國際幾何會議。這會議是由奧瑟曼(Robert Osserman)和陳省身老師組織的。也許是由于我與兩人的關系,我有幸作出兩次演講。在會議期間,我告訴了一些相識的朋友,說已經找到了卡拉比猜想的反例。消息一下子傳開了,徇眾要求,當天晚上另作報告。那晚 30 多位幾何工作者聚集在數學大樓的三樓,其中包括卡拉比、陳師和其他知名學者。我把如何構造反例說了一遍,大家似乎都非常滿意。
陳省身和丘成桐。1992 年攝于臺灣中央研究院。
卡拉比還為我的構造給出一個解釋。大會閉幕時,陳師說我這個反例或可視為整個大會最好的成果,我聽后既感意外,又興奮不已。
可是,真理總是現實的。兩個月后我收到卡拉比的信,希望我厘清反例中一些他搞不清楚的細節。看見他的信,我馬上就知道我犯了錯。接著的兩個禮拜,我不眠不休,希望重新構造反例,身心差不多要垮掉。每次以為找到一個反例,瞬即有微妙的理由把它打掉。
經過多次失敗后,我轉而相信這猜想是對的。于是我便改變了方向,把全副精力放在猜想的證明上。花了幾年工夫,終于在 1976 年證明了這個重要的猜想。好消息是,證明卡拉比猜想,也讓我之前構造的許多“反例”變成重要的定理。
另外,在斯坦福那個會議上,物理學家葛洛克(Robert Geroch)在報告中談到廣義相對論中的一個重要課題——正質量猜想(positive mass conjecture)。這猜想指出,在任何封閉的物理系統中,總質量(能量)必須是正數。我和孫理察(Richard Schoen)埋頭苦干,利用了最小曲面(minimal surface),證明了正質量猜想。
這段日子的工作把我引到廣義相對論,我們證明了幾條有關黑洞的定理。與相對論學者交流的愉快經驗,使我更能開放懷抱與物理學家合作。幾年之后,更參與了弦論的發展。
在證明卡拉比猜想時,我引進了一個方案,用以尋找滿足卡拉比方程的空間,這些空間現在通稱為卡拉比-丘空間。我深深地感到,我無心插柳,已經進入了一界數學高地。它必定與物理有關,并能揭開自然界深深埋藏的隱祕。然而,我并不知道這些想法在那里會大派用場,事實上,當時我懂得的物理也不多。
撫弦輕撥十維琴——弦論
1984 年,我接到物理學家赫羅維茲(Gary Horowitz)和史聰閔格(Andy Strominger)的電話。他們興沖沖的談到有關宇宙真空狀態的一個模型,這模型是建基于一套叫弦論的嶄新理論。
弦論的基本假設是,所有最基本的粒子都是由不斷振動的弦線所組成的,這些弦線非常非常細小。某些弦論要跟量子力學相容不排斥,時空必須容許某種超對稱性,同時時空還必須是十維的。
我在解決卡拉比猜想時證明存在的空間,得到赫羅維茲和史聰閔格的喜愛。他們相信這些空間會在弦論中擔當重要的角色,原因是它們具有弦論所需的那種超對稱性。他們希望知道這種看法對不對,我告訴他們,那是對的,他們聽到后十分高興。
不久,威騰(Edward Witten)打電話給我,我們是上一年在普林斯頓相識的。他認為就像當年量子力學剛剛面世那樣,理論物理學最激動人心的時刻來臨了。他說每一位對早期量子力學有貢獻的人,都在物理學史上留名。愛因斯坦在他的后半生花了三十年致力于統一理論,但至死也未竟全功。早期弦學家如葛林(Michael Green)和史瓦茲(John Schwarz)等人的重要發現,有可能終究把所有自然力統一起來。
六維卡拉比-丘空間的二維“切片”。印第安那大學 Andrew J. Hanson 提供。
當時威騰正與坎德拉斯(Philip Candelas)、赫羅維茲和史聰閔格一起,希望搞清楚弦論中那多出來的六維空間的幾何形狀。他們認為這六維卷縮成極小的空間,并稱此空間為卡拉比-丘空間,因為它源于卡拉比的猜想,并由我證明其存在。
弦論認為時空的總維數為十。我們熟悉的空間是三維,加上時間,那便是愛因斯坦理論中的四維時空。此外的六維屬于卡拉比-丘空間,它獨立的暗藏于四維時空的每一點里。我們看不見它,但弦論說它是存在的。
這個添了六個維度的空間夠神奇了,但弦論并不止于此,它進一步指出卡拉比-丘空間的幾何,決定了這個宇宙的性質和物理定律。哪種粒子能夠存在,質量是多少,它們如何相互作用,甚至自然界的一些常數,都取決于卡拉比-丘空間或本書所謂“內空間”的形狀。
理論物理學家利用狄拉克算子(Dirac operator)來研究粒子的屬性。透過分析這個算子的譜(spectrum),可以估計能看到粒子的種類。十個維數的時空可以想成是四維時空和六維卡拉比-丘空間的乘積。因此,當我們運用分離變數法求解算子譜時,它肯定會受卡拉比-丘空間所左右。卡拉比-丘空間的直徑非常小,因此非零譜所對應的粒子質量變得異常大。這類粒子很難觀測到,因為它們只會在極度高能量的狀態下才會出現。
另一方面,具有零譜的粒子是可能觀測到的,它們取決于卡拉比-丘空間的拓樸。由此可見,這細小的六維空間,其拓樸在物理中是如何舉足輕重。愛因斯坦過去指出,重力不過是時空幾何的反映。弦學家更進一步,大膽地說這個宇宙的規律,都可以由卡拉比-丘空間的幾何推演出來。這個六維空間究竟具有怎樣的形狀,顯然就很重要了。弦學家正就此問題廢寢忘餐,竭盡心力地研究。
威騰很想多知道一點卡拉比-丘空間。他從普林斯頓飛來圣地亞哥,與我討論如何構造這些空間。他還希望知道究竟有多少個卡拉比-丘空間可供物理學家揀選。原先,他們認為只有少數幾個拓樸類可作考慮,是以決定宇宙“內空間”的任務不難完成。可是,我們不久便發現,卡拉比-丘空間比原來估計的來得多。1980 年初,我想它只有數萬個,然而,其后這數目不斷增加,迄今未止。于是,決定內空間的任務一下子變得無比困難,假如稍后發現有無數卡拉比-丘空間的話,就更遙不可及了。當然,后者是真是假還有待驗證,我一直相信,任何維度卡拉比-丘空間的拓樸類型都是有限的。
把四維的時空簡化成無窮延伸的直線,雖然數學的直線沒有厚度,但弦論說如果用威力強大的放大鏡來看時空,就會發現它其實有一個隱微的厚度,任意切開,截面都是六維的卡拉比-丘空間。
于無聲處聽驚雷——鏡對稱
卡拉比-丘空間的熱潮,始于 1984 年,當時的物理學家,開始了解到這些復空間或會用于新興的理論上。熱情持續了幾年,便開始減退了。可是到了上世紀 80 年代末期,格林恩(Brian Greene)、普列瑟(Ronen Plesser)、坎德拉斯等人開始研究鏡對稱(mirror symmetry)時,卡拉比-丘空間又重新成為人們的焦點。
鏡對稱乃是兩個具有不同拓樸的卡拉比-丘空間,看起來沒有什么共通點,但卻擁有相同的物理定律。具有這樣關系的兩個卡拉比-丘空間稱為“鏡伴”(mirror partner)。
1995 年,史聰閔格、札斯洛(Eric Zaslow)和我提出一個猜想,對卡拉比-丘空間的子結構提供洞識,為鏡對稱給出解釋。根據這個 SYZ 猜想的理論,六維卡拉比-丘空間本質上可以分成兩個三維空間,其中之一是三維環面。如果模仿把半徑 r 變成 1/r 的操作,把這些三維環面“翻轉”,并與另一個三維空間結合起來,就會得到原卡拉比-丘空間的鏡伴。這個猜想提供了鏡對稱的幾何圖象,盡管目前只在一些特殊情況下被證明成立。
數學家把物理學家發現的鏡關系搬過來,成為數學上強而有力的工具。在某個卡拉比-丘空間上要解決的難題,可以放到它的鏡伴上去考慮,這種做法往往奏效。例如有一個求解曲線數目的問題,懸空了差不多一個世紀,就是這樣破解的。它使枚舉幾何學(enumerative geometry)這一數學分支,重新煥發了青春。這些進展令數學家對物理學家及弦論刮目相看。
鏡對稱是對偶性的一個重要例子。它就像一面窗,讓我們窺見卡拉比-丘空間的隱祕。利用它,我們確定了在五次三維形(一種卡拉比-丘空間)上給定階數的有理曲線的總數,這是一個非常困難的問題。
這類問題稱為舒伯特問題。它源于 19 世紀,德國數學家舒伯特(Hermann Schubert)首先證明,在五次三維形上共有 2,875 條一階有理曲線。到了 1986 年,卡茲(Sheldon Katz)證明了有 609,250 條二階曲線。1989 年前后,兩位挪威數學家艾林斯路得(Geir Ellingsrud)和司聰默(Stein Strømme)利用代數幾何的技巧,一下子找到了 2,682,549,425 條三階曲線。
可是另一方面,以坎德拉斯為首的一組物理學家,卻利用弦論找到 317,206,375 條三階曲線。他們在尋找的過程中,用了一條并非由數學推導出來卻適用于任意階數曲線的公式。這公式的真確與否,還有待數學家驗證。
1990 年 1 月,在辛格(Isadore Singer)的敦促下,我組織了弦學家和數學家首次的主要會議。大會在柏克萊的數理科學研究院(MSRI)舉行。會議上擁艾林斯路得-司聰默結果的人和擁坎德拉斯團隊的人分成兩派,壁壘分明,各不相讓。這局面維持了幾個月,直到數學家在他們寫的程式中發現錯誤,經修正后,結果竟與物理學家找到的數目完全吻合。經此一役,數學家對弦學家深刻的洞察力,不由得肅然起敬。
物理學家發現兩個卡拉比-丘空間,雖然拓樸很不同,卻可能對應到同一物理理論。這個性質稱為鏡對稱,彼此對稱的雙方稱為鏡伴。
這一幕還說明了鏡對稱自有其深厚的數學基礎。人們花了好幾年,到了 1990 年代中后期,鏡對稱的嚴格數學證明,包括坎德拉斯等人的公式,才由吉文塔(Alexander Givental)以及連文豪-劉克鋒-丘成桐各自獨立完成。
不知有吾身 此樂最為甚
話說回來,我們必須緊記,弦“論”畢竟是一套理論而已,它還未給實驗所驗證。事實上,有關的實驗還沒有設計出來。弦論是否真的與原來設想的那樣描述自然,還是言之過早。
歐洲核子研究組織(CERN) 日內瓦實驗室的大型強子對撞機,或許可以找到余維空間或者超對稱粒子存在的線索。這些發現可以和弦論相容,但不足以證明其正確性。
如果要給弦論打分的話,從好的方面來說,弦論啟發了某些極之精妙而有力的數學理論,從中獲得的數學式子已經有了嚴格的證明,弦論的對錯與否,都不能改變其真確性。弦論縱使還沒有為實驗所證實,它始終是現存的唯一能夠統一各種自然力的完整理論,而且它非常漂亮。試圖統一各種自然力的嘗試,竟然導致不同數學領域的融合,這是從來沒有想過的。
當然,現在要作總結還不是時候,過去兩千年間,幾何學屢經更替,最終形成今天的模樣。而每次重要的轉變,都基于人類對大自然的嶄新了解,這應當歸功于物理學的最新進展。我們或將親眼看到 21 世紀的重要發展,即量子幾何的面世,這門幾何未來將把細小的量子物理和大范圍的廣義相對論結合起來。
抽象的數學為何能夠揭露大自然如許訊息,實在不可思議,令人驚嘆不已,《大宇之形》一書的主旨乃在于此。不僅如此,我們還希望透過本書,使讀者知道數學家是如何進行研究的。他們不必是奇奇怪怪的人,就像在電影《心靈捕手》(Good Will Hunting)中的清潔工般,一面在打掃地板,另一面卻破解了懸空百年的數學難題。杰出的數學家也不必如另一部電影和小說《美麗心靈》(A Beautiful Mind)描述的那樣,是個精神異常、行為古怪的人。
數學家和做實驗的學者同樣研究自然,但他們采用的觀點不同,前者更為抽象。然而,無論數學家或物理學家,他們的工作都以大自然的真和美為依歸。數學和物理互動時迸發的火花,重要的想法如何相互滲透,偉大的新學說如何誕生,如此種種,我們都在書中娓娓道來。
就弦論而言,我們看到幾何和物理如何走在一起,催生了美妙的數學與精深的物理。這些數學是如此的美妙,影響了不同的領域,使人們相信它在物理中必有用武之地。可以肯定的是,故事還會繼續下去。本人能在其中擔當一角色,與有榮焉。今后并將傾盡心血,繼續努力。
1、本文只代表作者個人觀點,不代表本站觀點,僅供大家學習參考;
2、本站屬于非營利性網站,如涉及版權和名譽問題,請及時與本站聯系,我們將及時做相應處理;
3、歡迎各位網友光臨閱覽,文明上網,依法守規,IP可查。
內容 相關信息
? 昆侖專題 ?
? 十九大報告深度談 ?
? 新征程 新任務 新前景 ?
? 習近平治國理政 理論與實踐 ?
? 我為中國夢獻一策 ?
? 國資國企改革 ?
? 雄安新區建設 ?
? 黨要管黨 從嚴治黨 ?
圖片新聞